Posted by: ctbtonewsroom | December 18, 2015

New model more accurately tracks gases for underground nuclear explosion detection (

“Scientists at Los Alamos National Laboratory have developed a new, more thorough method for detecting underground nuclear explosions (UNEs) by coupling two fundamental elements—seismic models with gas-flow models—to create a more complete picture of how an explosion’s evidence (radionuclide gases) seep to the surface.

This team’s research investigated the effects of the fracture network on late-time seepage (weeks to months) of radionuclide gases that migrate through explosion-enhanced fracture networks. The simulations were created for one kiloton UNEs in granite and tuff at burial depths of 125, 250 and 390 meters. Rock damage was simulated in a two-dimensional axisymmetric model using the CASH (CAmpell-SHashkov) hydrocode, a computer code for modeling shock propagation. Barometric data, of great importance to the accuracy of the models and simulations, were selected from the varied climates of Colorado, Alaska and Hawaii across different seasons and modeled with FEHM (Finite Element Heat and Mass transfer code) developed at LANL. Rather than a generic mathematical model, this research included first-principle seismology, chemistry and experimental data to improve the ensemble model.”


Figure 2 from the study (see Damage results at 125, 250, and 390 m depth of burial.

Read the full article published by the on 17 December 2015 here, and the full study in the Nature’s Scientific Reports.

CTBTO Executive Secretary Lassina Zerbo visited the U.S. nuclear labs and former Nevada Test Site from 19 to 26 November 2015, see story here.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s


%d bloggers like this: